A note on Lie nilpotency in operator algebras
نویسندگان
چکیده
منابع مشابه
Lie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملLie Nilpotency Indices of Modular Group Algebras
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that if KG is Lie nilpotent then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. The class of groups G for which these indices are maximal or almost maximal have already been determined. Here we determine G for which upper (or lower) L...
متن کاملlie-type higher derivations on operator algebras
motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study lie-type higher derivations on operator algebras in the current work. it is shown that every lie (triple-)higher derivation on some classical operator algebras is of standard form. the definition of lie $n$-higher derivations on operator algebras and related pote...
متن کاملSome Criteria for Nilpotency in Groups and Lie Algebras
We shall say that an automorphism a is nilpotent or acts nilpotently on a group G if in the holomorph H= [G](a) of G with a, a is a bounded left Engel element, that is, [H, ¿a] = l for some natural number ¿. Here [H, ka] means [H, (k — l)a] with [H, Oa] denoting H. Let G' denote the commutator subgroup [G, G], and let $(G) denote the Frattini subgroup of G. If a is an automorphism of a nilpoten...
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices. I
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G|+ 1, where |G| is the order of the commutator subgroup. The authors have previously determined the groups G for which this index is maximal and here they determine the G for which it is ‘almost maximal’, that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1987
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-85-1-55-59